Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Med Chem Lett ; 15(1): 87-92, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38229759

RESUMO

Current therapy for primary amoebic meningoencephalitis (PAM), a highly lethal brain infection in humans caused by Naegleria fowleri amoeba, is restricted to repurposed drugs with limited efficacy and success. Discovery of an antiamoebic benzylamine scaffold 2 precipitated a medicinal chemistry effort to improve potency, cytotoxicity profile, and drug-like properties. Thirty-four compounds were prepared, leading to compound 28 with significant gains in potency (EC50 = 0.92 µM), solubility, and microsomal stability and a demonstrated absence of cytotoxicity in SH-SY5Y human neuroblastoma cells (CC50 > 20 µM). The compounds demonstrated excellent blood-brain barrier permeability in an in vitro assay, thereby providing a new structural scaffold that inhibits N. fowleri viability and permits the investigation of therapeutic interventions in an understudied neglected disease.

2.
Clin Pharmacokinet ; 62(7): 943-953, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37326917

RESUMO

The US Food and Drug Administration's Animal Rule provides a pathway for approval of drugs and biologics aimed to treat serious or life-threatening conditions wherein traditional clinical trials are either not ethical or feasible. In such a scenario, determination of safety and efficacy are based on integration of data on drug disposition and drug action collected from in vitro models, infected animals, and healthy volunteer human studies. The demonstration of clinical efficacy and safety in humans based on robust, well-controlled animal studies is filled with challenges. This review elaborates on the challenges in the translation of data from in vitro and animal models to human dosing for antimicrobials. In this context, it discusses precedents of drugs approved under the Animal Rule, along with the approaches and guidance undertaken by sponsors.


Assuntos
Anti-Infecciosos , Aprovação de Drogas , Animais , Estados Unidos , Humanos , United States Food and Drug Administration , Preparações Farmacêuticas , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Fatores Biológicos
3.
Sci Transl Med ; 15(691): eabl9344, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37043558

RESUMO

Venezuelan and eastern equine encephalitis viruses (VEEV and EEEV, respectively) are mosquito-borne, neuroinvasive human pathogens for which no FDA-approved therapeutic exists. Besides the biothreat posed by these viruses when aerosolized, arthropod transmission presents serious health risks to humans, as demonstrated by the 2019 outbreak of EEE disease in the United States that resulted in 38 confirmed cases, 19 deaths, and neurological effects in survivors. Here, we describe the discovery of a 2-pyrrolidinoquinazolinone scaffold, efficiently synthesized in two to five steps, whose structural optimization resulted in profound antiviral activity. The lead quinazolinone, BDGR-49, potently reduced cellular VEEV and EEEV titers by >7 log at 1 µM and exhibited suitable intravenous and oral pharmacokinetic profiles in BALB/c mice to achieve excellent brain exposure. Outstanding in vivo efficacy was observed in several lethal, subcutaneous infection mouse models using an 8-day dosing regimen. Prophylactically administered BDGR-49 at 25 mg kg-1 per day fully protected against a 10× LD50 VEEV Trinidad donkey (TrD) challenge in BALB/c mice. Similarly, we observed 70% protection when 10× LD50 EEEV FL93-939-infected C57BL/6 mice were treated prophylactically with BDGR-49 at 50 mg kg-1 per day. Last, we observed 100% therapeutic efficacy when mice, challenged with 10× LD50 VEEV TrD, were dosed at 48 hours after infection with BDGR-49 at 25 mg kg-1 per day. Mouse brain viral titers at 96 hours after infection were reduced to values near the limit of detection. Collectively, these results underscore the substantial development potential of a well-tolerated, brain-penetrant lead compound that shows promise in preventing and treating encephalitic alphavirus disease.


Assuntos
Vírus da Encefalite Equina Venezuelana , Encefalomielite Equina do Leste , Humanos , Cavalos , Animais , Camundongos , Estados Unidos , Antivirais/farmacologia , Antivirais/uso terapêutico , Camundongos Endogâmicos C57BL , Encéfalo
4.
Viruses ; 15(2)2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36851628

RESUMO

Venezuelan, western, and eastern equine encephalitic alphaviruses (VEEV, WEEV, and EEEV, respectively) are arboviruses that are highly pathogenic to equines and cause significant harm to infected humans. Currently, human alphavirus infection and the resulting diseases caused by them are unmitigated due to the absence of approved vaccines or therapeutics for general use. These circumstances, combined with the unpredictability of outbreaks-as exemplified by a 2019 EEE surge in the United States that claimed 19 patient lives-emphasize the risks posed by these viruses, especially for aerosolized VEEV and EEEV which are potential biothreats. Herein, small molecule inhibitors of VEEV, WEEV, and EEEV are reviewed that have been identified or advanced in the last five years since a comprehensive review was last performed. We organize structures according to host- versus virus-targeted mechanisms, highlight cellular and animal data that are milestones in the development pipeline, and provide a perspective on key considerations for the progression of compounds at early and later stages of advancement.


Assuntos
Alphavirus , Encefalomielite Equina , Animais , Cavalos , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , Encefalomielite Equina/tratamento farmacológico , Surtos de Doenças , Venezuela
5.
J Org Chem ; 87(21): 14889-14898, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36194836

RESUMO

A synthesis of dihydropyrazino-[2,1-b]-quinazolinones is described using a 2-alkylaminoquinazolinone-mediated ring opening of a-/chiral sulfamidates, followed by a tandem quinazolinone-amidine rearrangement termed SQuAReS. This approach takes advantage of sulfamidates whose regioselective ring opening, after hydrolysis, appends an optimally distanced nucleophilic amine to a quinazolinone such that subsequent domino rearrangements are favored, integrating unique substitution patterns on a privileged core. This three-step protocol integrated five telescoped transformations and generated 20 pyrazinoquinazolinones in up to 74% yield with high enantiomeric fidelity and diastereoselectivity.


Assuntos
Amidinas , Quinazolinonas , Estrutura Molecular , Estereoisomerismo , Aminas
6.
Antimicrob Agents Chemother ; 66(6): e0237321, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35604214

RESUMO

Infection with pathogenic free-living amoebae, including Naegleria fowleri, Acanthamoeba spp., and Balamuthia mandrillaris, can lead to life-threatening illnesses, primarily because of catastrophic central nervous system involvement. Efficacious treatment options for these infections are lacking, and the mortality rate due to infection is high. Previously, we evaluated the N. fowleri glucokinase (NfGlck) as a potential target for therapeutic intervention, as glucose metabolism is critical for in vitro viability. Here, we extended these studies to the glucokinases from two other pathogenic free-living amoebae, including Acanthamoeba castellanii (AcGlck) and B. mandrillaris (BmGlck). While these enzymes are similar (49.3% identical at the amino acid level), they have distinct kinetic properties that distinguish them from each other. For ATP, AcGlck and BmGlck have apparent Km values of 472.5 and 41.0 µM, while Homo sapiens Glck (HsGlck) has a value of 310 µM. Both parasite enzymes also have a higher apparent affinity for glucose than the human counterpart, with apparent Km values of 45.9 µM (AcGlck) and 124 µM (BmGlck) compared to ~8 mM for HsGlck. Additionally, AcGlck and BmGlck differ from each other and other Glcks in their sensitivity to small molecule inhibitors, suggesting that inhibitors with pan-amoebic activity could be challenging to generate.


Assuntos
Acanthamoeba , Amebíase , Amoeba , Balamuthia mandrillaris , Naegleria fowleri , Amebíase/tratamento farmacológico , Amebíase/parasitologia , Glucoquinase , Humanos
7.
ACS Med Chem Lett ; 13(4): 546-553, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35450382

RESUMO

Venezuelan and eastern equine encephalitis viruses are disease-causing, neuropathic pathogens with no approved treatment options in humans. While expanding the pharmacophoric model of antialphaviral amidines prepared via a quinazolinone rearrangement, we discovered that diamine-treated, 2-dihalomethylquinolinones unexpectedly afforded ring-expanded piperazine-fused benzodiazepinones. Notably, this new chemotype (19 examples) showed potent, submicromolar inhibition of virus-induced cell death, >7-log reduction of viral yield, and tractable structure-activity relationships across both viruses. Antiviral activity was confirmed in primary human neuronal cells. A mechanistic rationale for product formation is proposed, and key structural elements were comparatively modeled between a similarly substituted antiviral amidine and piperazinobenzodiazepinone prototypes to guide future antiviral development.

8.
Org Lett ; 23(15): 5799-5803, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34251832

RESUMO

An expedient route to enantiopure, diastereomeric pyrrolopyrazinoquinazolinones was developed following the discovery of a domino quinazolinone rearrangement-intramolecular cyclization of N-H benzamidines. A Ugi-Mumm-Staudinger sequence employing an optically pure proline derivative gave quinazolinones that, upon N-Boc deprotection, rearranged to tautomeric Z-benzamidines. Subsequent spontaneous cyclization afforded 15 diastereomeric pyrazinoquinazolinone pairs in up to 83% overall yield and 89:11 d.r which were separated easily via routine chromatographic purification-the only one required in the entire process.


Assuntos
Benzamidinas/química , Prolina/química , Quinazolinonas/síntese química , Ciclização , Estrutura Molecular , Quinazolinonas/química , Estereoisomerismo
9.
Curr Opin Virol ; 50: 1-7, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34256351

RESUMO

A pipeline of effective direct-acting antivirals (DAAs) remains a critical gap in addressing the current pandemic given vaccination hesitancy, the emergence of viral variants of concern, susceptible populations for which vaccination is ineffective or unavailable, and the possibility that coronavirus disease 2019 (COVID-19) is here to stay. Since the start of the pandemic, global efforts in small molecule drug discovery have focused largely on testing of FDA-approved drugs to accelerate evaluation in clinical trials in hospitalized patients. With 80% of the population who test positive for SARS-CoV-2 having asymptomatic to mild COVID-19, early stage, DAAs would be of enormous benefit to reduce spread, duration of symptoms and quarantine length. We highlight a few of the most promising DAAs in clinical trials and discuss considerations in how to navigate the challenges and pitfalls of novel small molecule discovery and thereby accelerate the advancement of new, safe, and oral DAAs.


Assuntos
Antivirais/farmacologia , Descoberta de Drogas , SARS-CoV-2/efeitos dos fármacos , Ensaios Clínicos como Assunto , Procedimentos Clínicos , Humanos
10.
Adv Synth Catal ; 363(6): 1638-1645, 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33867902

RESUMO

Chiral 2-alkylquinazolinones are key synthetic intermediates, but their preparation in high optical purity is challenging. Thus, a multicomponent procedure integrating anthranilic acids, N-Boc-amino acids, and amines in the presence of methanesulfonyl chloride, N-methylimidazole, and copper(II) chloride was developed to mildly afford N-Boc-2-alkylaminoquinazolin-4(3H)-ones with excellent preservation of enantiomeric purity (>99% ee). Copper(II) chloride was essential to retaining enantiopurity, and reaction component structural changes were well tolerated, resulting in an efficient, all-in-one procedure that promotes sequential coupling, lactonization, aminolysis, and cyclization in good yields. The method was applied to the rapid assembly of four key intermediates used in the synthesis of high profile quinazolinones, including several PI3K inhibitor drugs.

11.
ACS Med Chem Lett ; 12(2): 228-235, 2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35035774

RESUMO

Tuberculosis is a major global public health concern, and new drugs are needed to combat both the typical form and the increasingly common drug-resistant form of this disease. The essential tuberculosis kinase PknB is an attractive drug development target because of its central importance in several critical signaling cascades. A major hurdle in kinase inhibitor development is the reduction of toxicity due to nonspecific kinase activity in host cells. Here a novel class of PknB inhibitors was developed from hit aminopyrimidine 1 (GW779439X), which was originally designed for human CDK4 but failed to progress clinically because of high toxicity and low specificity. Replacing the pyrazolopyridazine headgroup of the original hit with substituted pyridine or phenyl headgroups resulted in a reduction of Cdk activity and a 3-fold improvement in specificity over the human kinome while maintaining PknB activity. This also resulted in improved microbiological activity and reduced toxicity in THP-1 cells and zebrafish.

12.
ACS Med Chem Lett ; 11(12): 2382-2388, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33335660

RESUMO

Toxoplasma gondii causes a prevalent human infection for which only the acute stage has an FDA-approved therapy. To find inhibitors of both the acute stage parasites and the persistent cyst stage that causes a chronic infection, we repurposed a compound library containing known inhibitors of parasitic hexokinase, the first step in the glycolysis pathway, along with a larger collection of new structural derivatives. The focused screen of 22 compounds showed a 77% hit rate (>50% multistage inhibition) and revealed a series of aminobenzamide-linked picolinic acids with submicromolar potency against both T. gondii parasite forms. Picolinic acid 23, designed from an antiparasitic benzamidobenzoic acid class with challenging ADME properties, showed 60-fold-enhanced solubility, a moderate LogD7.4, and a 30% improvement in microsomal stability. Furthermore, isotopically labeled glucose tracing revealed that picolinic acid 23 does not function by hexokinase inhibition. Thus, we report a new probe scaffold to interrogate dual-stage inhibition of T. gondii.

13.
J Virol ; 94(22)2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-32878897

RESUMO

Venezuelan equine encephalitis virus (VEEV) is a New World Alphavirus that can cause neurological disease and death in humans and equines following transmission from infected mosquitoes. Despite the continued epidemic threat of VEEV, and its potential use as a bioterrorism agent, there are no FDA-approved antivirals or vaccines for treatment or prevention. Previously, we reported the discovery of a small molecule, ML336, with potent antiviral activity against VEEV. To further explore the population-level resistance profiles of ML336, we developed a whole-genome next-generation sequencing (NGS) approach to examine single nucleotide polymorphisms (SNPs) from virus passaged in dose escalation studies in a nonhuman primate kidney epithelial and a human astrocyte cell line, Vero 76 and SVGA, respectively. We passaged VEEV TC-83 in these two cell lines over seven concentrations of ML336, starting at 50 nM. NGS revealed several prominent mutations in the nonstructural protein (nsP) 3 and nsP4 genes that emerged consistently in these two distinct in vitro environments-notably, a mutation at Q210 in nsP4. Several of these mutations were stable following passaging in the absence of ML336 in Vero 76 cells. Network analyses showed that the trajectory of resistance differed between Vero and SVGA. Moreover, the penetration of SNPs was lower in SVGA. In conclusion, we show that the microenvironment influenced the SNP profile of VEEV TC-83. Understanding the dynamics of resistance in VEEV against newly developed antiviral compounds will guide the design of optimal drug candidates and dosing regimens for minimizing the emergence of resistant viruses.IMPORTANCE RNA viruses, including Venezuelan equine encephalitis virus (VEEV), have high mutation rates that allow for rapid adaptation to selective pressures in their environment. Antiviral compounds exert one such pressure on virus populations during infections. Next-generation sequencing allows for examination of viruses at the population level, which enables tracking of low levels of single-nucleotide polymorphisms in the population over time. Therefore, the timing and extent of the emergence of resistance to antivirals can be tracked and assessed. We show here that in VEEV, the trajectory and penetration of antiviral resistance reflected the microenvironment in which the virus population replicates. In summary, we show the diversity of VEEV within a single population under antiviral pressure and two distinct cell types, and we show that population dynamics in these viruses can be examined to better understand how they evolve over time.


Assuntos
Benzamidas/farmacologia , Farmacorresistência Viral/efeitos dos fármacos , Farmacorresistência Viral/genética , Vírus da Encefalite Equina Venezuelana/efeitos dos fármacos , Vírus da Encefalite Equina Venezuelana/genética , Piperazinas/farmacologia , Animais , Antivirais/farmacologia , Linhagem Celular , Chlorocebus aethiops , Encefalomielite Equina Venezuelana , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação , Polimorfismo de Nucleotídeo Único , Células Vero , Proteínas Virais/genética
14.
Chemistry ; 26(11): 2486-2492, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-31912567

RESUMO

A highly efficient 2-chloroquinazolin-4(3H)-one rearrangement was developed that predictably generates either twisted-cyclic or ring-fused guanidines in a single operation, depending on the presence of a primary versus secondary amine in the accompanying diamine reagent. Exclusive formation of twisted-cyclic guanidines results from pairing 2-chloroquinazolinones with secondary diamines. Use of primary amine-containing diamines permits a domino quinazolinone rearrangement/intramolecular cyclization, gated through (E)-twisted-cyclic guanidines, to afford ring-fused N-acylguanidines. This scalable, structurally tolerant transformation generated 55 guanidines and delivered twisted-cyclic guanidines with robust plasma stability and an abbreviated total synthesis of an antitumor ring-fused guanidine (4 steps, 55 % yield).


Assuntos
Antineoplásicos/síntese química , Guanidinas/química , Guanidinas/síntese química , Quinazolinonas/química , Catálise , Ciclização , Diaminas/química , Estrutura Molecular , Estereoisomerismo
15.
Antiviral Res ; 174: 104674, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31816348

RESUMO

Venezuelan equine encephalitis virus (VEEV) is an alphavirus that is endemic to the Americas. VEEV outbreaks occur periodically and cause encephalitis in both humans and equids. There are currently no therapeutics or vaccines for treatment of VEEV in humans. Our group has previously reported on the development of a benzamidine VEEV inhibitor, ML336, which shows potent antiviral activity in both in vitro and in vivo models of infection. In cell culture experiments, ML336 inhibits viral RNA synthesis when added 2-4 h post-infection, and mutations conferring resistance occur within the viral nonstructural proteins (nsP2 and nsP4). We hypothesized that ML336 targets an activity of the viral replicase complex and inhibits viral RNA synthesis. To test this hypothesis, we employed various biochemical and cellular assays. Using structural analogues of ML336, we demonstrate that the cellular antiviral activity of these compounds correlates with their inhibition of viral RNA synthesis. For instance, the IC50 of ML336 for VEEV RNA synthesis inhibition was determined as 1.1 nM, indicating potent anti-RNA synthesis activity in the low nanomolar range. While ML336 efficiently inhibited VEEV RNA synthesis, a much weaker effect was observed against the Old World alphavirus Chikungunya virus (IC50 > 4 µM), agreeing with previous data from a cell based assay. Using a tritium incorporation assay, we demonstrated that there was no significant inhibition of cellular transcription. With a combination of fluorography, strand-specific qRT-PCR, and tritium incorporation, we demonstrated that ML336 inhibits the synthesis of the positive sense genomic, negative sense template, and subgenomic RNAs of VEEV. Based on these results, we propose that the mechanism of action for this class of antiviral compounds is inhibition of viral RNA synthesis through interaction with the viral replicase complex.


Assuntos
Antivirais/farmacologia , Benzamidas/farmacologia , Vírus da Encefalite Equina Venezuelana/efeitos dos fármacos , Inibidores da Síntese de Ácido Nucleico/farmacologia , Piperazinas/farmacologia , RNA Viral/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Animais , Linhagem Celular , Chlorocebus aethiops , Cricetinae , Encefalomielite Equina Venezuelana/tratamento farmacológico , Encefalomielite Equina Venezuelana/virologia , Cavalos , Interações entre Hospedeiro e Microrganismos/efeitos dos fármacos , Concentração Inibidora 50 , Rim/citologia , RNA Viral/biossíntese , Células Vero
16.
J Org Chem ; 85(2): 464-481, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31786917

RESUMO

An anionic annulation strategy employing isatoic anhydrides and a wide assortment of enolizable partners was developed to afford over 80 novel ring-fused, N-substituted 4-quinolinones, an underrepresented privileged template. Multiple factors governing the efficiency of the transformation were determined, resulting in a reliable and tunable synthetic platform applicable for a broad range of substrates with variable deprotonation susceptibility, such as tetramic and tetronic acids, cyclic 1,3-diketones, and cycloalkanones. Application to the synthesis of bioactive, pyrrolizine-fused 4-quinolinone, penicinotam 3, resulted in the most brief and highest yielding total synthesis of the alkaloid in three steps and a 36% overall yield.

17.
Antiviral Res ; 167: 25-34, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30970271

RESUMO

Currently, there are no licensed human vaccines or antivirals for treatment of or prevention from infection with encephalitic alphaviruses. Because epidemics are sporadic and unpredictable, and endemic disease is common but rarely diagnosed, it is difficult to identify all populations requiring vaccination; thus, an effective post-exposure treatment method is needed to interrupt ongoing outbreaks. To address this public health need, we have continued development of ML336 to deliver a molecule with prophylactic and therapeutic potential that could be relevant for use in natural epidemics or deliberate release scenario for Venezuelan equine encephalitis virus (VEEV). We report findings from in vitro assessments of four analogs of ML336, and in vivo screening of three of these new derivatives, BDGR-4, BDGR-69 and BDGR-70. The optimal dosing for maximal protection was observed at 12.5 mg/kg/day, twice daily for 8 days. BDGR-4 was tested further for prophylactic and therapeutic efficacy in mice challenged with VEEV Trinidad Donkey (TrD). Mice challenged with VEEV TrD showed 100% and 90% protection from lethal disease when treated at 24 and 48 h post-infection, respectively. We also measured 90% protection for BDGR-4 in mice challenged with Eastern equine encephalitis virus. In additional assessments of BDGR-4 in mice alone, we observed no appreciable toxicity as evaluated by clinical chemistry indicators up to a dose of 25 mg/kg/day over 4 days. In these same mice, we observed no induction of interferon. Lastly, the resistance of VEEV to BDGR-4 was evaluated by next-generation sequencing which revealed specific mutations in nsP4, the viral polymerase.


Assuntos
Benzamidas , Benzamidinas , Farmacorresistência Viral/genética , Vírus da Encefalite Equina do Leste/efeitos dos fármacos , Vírus da Encefalite Equina Venezuelana/efeitos dos fármacos , Piperazinas , Animais , Antivirais/síntese química , Antivirais/farmacologia , Benzamidas/síntese química , Benzamidas/farmacologia , Benzamidinas/síntese química , Benzamidinas/farmacologia , Linhagem Celular , Encefalomielite Equina do Leste/tratamento farmacológico , Encefalomielite Equina do Leste/prevenção & controle , Encefalomielite Equina Venezuelana/tratamento farmacológico , Encefalomielite Equina Venezuelana/prevenção & controle , Genes Virais , Camundongos , Mutação , Piperazinas/síntese química , Piperazinas/farmacologia
18.
Artigo em Inglês | MEDLINE | ID: mdl-30783001

RESUMO

Infection with the free-living amoeba Naegleria fowleri leads to life-threatening primary amoebic meningoencephalitis. Efficacious treatment options for these infections are limited, and the mortality rate is very high (∼98%). Parasite metabolism may provide suitable targets for therapeutic design. Like most other organisms, glucose metabolism is critical for parasite viability, being required for growth in culture. The first enzyme required for glucose metabolism is typically a hexokinase (HK), which transfers a phosphate from ATP to glucose. The products of this enzyme are required for both glycolysis and the pentose phosphate pathway. However, the N. fowleri genome lacks an obvious HK homolog and instead harbors a glucokinase (Glck). The N. fowleri Glck (NfGlck) shares limited (25%) amino acid identity with the mammalian host enzyme (Homo sapiens Glck), suggesting that parasite-specific inhibitors with anti-amoeba activity can be generated. Following heterologous expression, NfGlck was found to have a limited hexose substrate range, with the greatest activity observed with glucose. The enzyme had apparent Km values of 42.5 ± 7.3 µM and 141.6 ± 9.9 µM for glucose and ATP, respectively. The NfGlck structure was determined and refined to 2.2-Å resolution, revealing that the enzyme shares greatest structural similarity with the Trypanosoma cruzi Glck. These similarities include binding modes and binding environments for substrates. To identify inhibitors of NfGlck, we screened a small collection of inhibitors of glucose-phosphorylating enzymes and identified several small molecules with 50% inhibitory concentration values of <1 µM that may prove useful as hit chemotypes for further leads and therapeutic development against N. fowleri.


Assuntos
Glucoquinase/química , Glucoquinase/metabolismo , Naegleria fowleri/enzimologia , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Glucose/metabolismo , Humanos , Trypanosoma cruzi/enzimologia
19.
Org Biomol Chem ; 17(12): 3118-3128, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30730519

RESUMO

An efficient four-step, six-transformation protocol was developed to afford bioactive N-alkyl- or N-arylamide (E)-arylamidines featuring strategic amidine C3 modifications which were inaccessible or low yielding by previous methods. This synthetic approach, exemplified with 24 amidines and requiring only a single purification, highlights a multicomponent Ugi-Mumm rearrangement to afford highly diversified quinazolinones which undergo regiospecific rearrangement to afford new amidines. The method extensively broadens the structural scope of this new class of trisubstituted amidines and demonstrates the tolerance of regional C3 amidine steric bulk, visualized with X-ray crystallographic analysis.


Assuntos
Amidinas/síntese química , Quinazolinonas/química , Amidinas/química , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular , Estereoisomerismo
20.
Cell Chem Biol ; 25(10): 1231-1241.e4, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30078634

RESUMO

The oligosaccharyltransferase (OST) is a multisubunit enzyme complex that N-glycosylates proteins in the secretory pathway and is considered to be constitutive and unregulated. However, small-molecule OST inhibitors such as NGI-1 provide a pharmacological approach for regulating N-linked glycosylation. Herein we design cell models with knockout of each OST catalytic subunit (STT3A or STT3B) to screen the activity of NGI-1 and its analogs. We show that NGI-1 targets the function of both STT3A and STT3B and use structure-activity relationships to guide synthesis of catalytic subunit-specific inhibitors. Using this approach, pharmacophores that increase STT3B selectivity are characterized and an STT3B-specific inhibitor is identified. This inhibitor has discrete biological effects on endogenous STT3B target proteins such as COX2 but does not activate the cellular unfolded protein response. Together this work demonstrates that subsets of glycoproteins can be regulated through pharmacologic inhibition of N-linked glycosylation.


Assuntos
Benzamidas/química , Benzamidas/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Hexosiltransferases/antagonistas & inibidores , Proteínas de Membrana/antagonistas & inibidores , Sulfonamidas/química , Sulfonamidas/farmacologia , Domínio Catalítico , Avaliação Pré-Clínica de Medicamentos , Técnicas de Inativação de Genes , Células HEK293 , Hexosiltransferases/genética , Hexosiltransferases/metabolismo , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...